Abstract

We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second-order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in $H^1$. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines elements in which the computed eigenfunction has high oscillation. The error analysis extends the theory of convergence of adaptive methods for linear elliptic source problems to elliptic eigenvalue problems, and in particular deals with various complications which arise essentially from the nonlinearity of the eigenvalue problem. Because of this nonlinearity, the convergence result holds under the assumption that the initial finite element mesh is sufficiently fine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.