Abstract
Based on the periodic unfolding method in periodic homogenization, we deduce a convergence result for gradients of functions defined on connected, smooth, and periodic manifolds. Under the assumption of certain a-priori estimates of the gradient, which are typical for fast diffusion, the sum of a term involving a gradient with respect to the slow variable and one with respect to the fast variable is obtained in the homogenization limit. In addition, we show in a brief example how to apply this result and find for a reaction–diffusion equation defined on a periodic manifold that the homogenized equation contains a term describing macroscopic diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.