Abstract
The recently proposed iterative sparsification projection (ISP), a fast and robust sparse signal recovery algorithm framework, can be classified as smooth-ISP and nonsmooth-ISP. However, no convergence analysis has been established for the nonsmooth-ISP in the previous works. Motivated by this absence, the present paper provides a convergence analysis for ISP with soft-thresholding (ISP-soft) which is an instance of the nonsmooth-ISP. In our analysis, the composite operator of soft-thresholding and proximal projection is viewed as a fixed point mapping, whose nonexpansiveness plays a key role. Specifically, our convergence analysis for the sequence generated by ISP-soft can be summarized as follows: 1) For each inner loop, we prove that the sequence has a unique accumulation point which is a fixed point, and show that it is a Cauchy sequence; 2) for the last inner loop, we prove that the accumulation point of the sequence is a critical point of the objective function if the final value of the threshold satisfies a condition, and show that the corresponding objective values are monotonically nonincreasing. A numerical experiment is given to validate some of our results and intuitively present the convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.