Abstract
Elastic ribbons are elastic structures whose length-to-width and width-to-thickness aspect ratios are both large. Sadowsky proposed a one-dimensional model for ribbons featuring a nonlinear constitutive relation for bending and twisting: it brings in both rich behaviours and numerical difficulties. By discarding non-physical solutions to this constitutive relation, we show that it can be inverted; this simplifies the system of differential equations governing the equilibrium of ribbons. Based on the inverted form, we propose a natural regularization of the constitutive law that eases the treatment of singularities often encountered in ribbons. We illustrate the approach with the classical problem of the equilibrium of a Möbius ribbon, and compare our findings with the predictions of the Wunderlich model. Overall, our approach provides a simple method for simulating the statics and the dynamics of elastic ribbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.