Abstract

ABSTRACTMoisture may cause many detrimental effects to polymers and their composites, thus inhibiting the applications of polymeric materials in hot and humid environments. In this article, a convection–diffusion porous media model is derived to better characterize rapid moisture transport in polymer composites at high temperatures. The model considers both continuum diffusion in solid and high‐pressure convection taking place in the pore network. Coupling of convection and diffusion is achieved by combining the law of conservation of mass, Darcy's law, the liquid–vapor chemical equilibrium, and the ideal gas law. The presented model is validated by conducting experimental tests on an epoxy compound. It is found that the proposed convection–diffusion model is more effective than diffusion‐only and convection‐only models for interpreting rapid desorption tests at high temperatures. A numerical study is also performed to predict maximum vapor pressure during a rapid heating process. Vapor pressure is found to be as high as 6.5 MPa at a heating rate of 10 K/s. It is concluded that the convection–diffusion model is able to capture both vapor dynamics and diffusion mechanism in porous polymeric materials, and can be potentially used to further investigate polymer‐moisture interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1440–1449

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call