Abstract

Real-world natural language sentences are often long and complex, and contain unexpected grammatical constructions. They even include noise and ungrammaticality. This paper describes the Controlled Skip Parser, a program that parses such real-world sentences by skipping some of the words in the sentence. The new feature of this parser is that it controls its behavior by finding out which words to skip, without using domain-specific knowledge. The parser is a priority-based chart parser. By assigning appropriate priority levels to the constituents in the chart, the parser's behavior is controlled. Statistical information is used for assigning priority levels. The statistical information (n-grams) can be thought of as a generalized approximation of the grammar learned from past successful experiences. The control mechanism gives a great speed-up and reduction in memory usage. Experiments on real newspaper articles are shown, and our experience with this parser in a machine translation system is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.