Abstract

Ear infections are a commonly-occurring problem that can affect people of all ages. Treatment of these pathologies usually includes the administration of topical or systemic antibiotics, depending on the location of the infection. In this context, we sought to address the feasibility of a single-application slow-releasing therapeutic formulation of an antibiotic for the treatment of otitis externa. Thixotropic hydrogels, which are gels under static conditions but liquefy when shaken, were tested for their ability to act as drug controlled release systems and inhibit Pseudomonas aeruginosa and Staphylococcus aureus, the predominant bacterial strains associated with outer ear infections. Our overall proof of concept, including in vitro evaluations reflective of therapeutic ease of administration, formulation stability, cytocompatibility assessment, antibacterial efficacy, and formulation lifespan, indicate that these thixotropic materials have strong potential for development as otic treatment products.

Highlights

  • IntroductionThe ear might seem anatomically simple, in reality it is a complex organ that includes external, middle, and inner structures [3]

  • Ear infections are common pathological conditions caused by bacterial, viral, or fungal agents [1,2]. the ear might seem anatomically simple, in reality it is a complex organ that includes external, middle, and inner structures [3]

  • In the framework of an easy to apply therapeutic formulation, we sought to base our system on a thixotropic material that liquefies under shear stress or agitation but becomes a gel under static conditions

Read more

Summary

Introduction

The ear might seem anatomically simple, in reality it is a complex organ that includes external, middle, and inner structures [3]. The outer ear includes the pinna, the external ear auditory canal, and the tympanic membrane (the eardrum). Its role is to funnel sound to the middle ear, which is comprised of a system of small bones (ossicles) that vibrate under the stimulation of the acoustic waves. Signals originating in the middle ear stimulate the structures of the inner ear (cochlea and labyrinth), which sends information on balance and head position to the central nervous system. The inner ear communicates with the nasal cavity thought the Eustachian (auditory) tube that controls the pressure in the middle ear and drains accumulated secretions

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.