Abstract

Plug-in electric vehicles (PEVs) have a potential amount of battery energy storage capacity, which is not fully utilized in regular day-to-day travels. The utilization of spare PEV battery capacity for grid support applications using vehicle-to-grid concept is becoming popular. Depending on the stress on the grid during peak load periods, a small amount of peak-shaving support from the PEVs in a feeder can be useful in terms of grid support. However, as the PEV batteries have limited capacity and the capacity usage is also constrained by travel requirements, a strategy is proposed in this paper for an effective utilization of the available PEV battery capacity for peak shaving. A controllable discharging pattern is developed to most utilize the limited PEV battery capacity when peak shaving is most valuable based on the demand pattern. To ensure an effective use of the available PEV battery capacity for travel, which is the main usage of the PEVs, and for grid support application, dynamic adjustments in PEV discharging rates are made. The effectiveness of the proposed strategy is tested using a real distribution system in Australia and based on practical PEV data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.