Abstract

Minhyong Kim defined the Selmer variety associated with a curve $X$ over a number field, which is a non-abelian analogue of the ${\mathbb Q}_p$-Selmer group of the Jacobian variety of $X$. In this paper, we define a torsion analogue of the Selmer variety. Recall that Mazur's control theorem describes the behavior of the torsion Selmer groups of an abelian variety with good ordinary reduction at $p$ in the cyclotomic tower of number fields. We give a non-abelian analogue of Mazur's control theorem by replacing the torsion Selmer group by a torsion analogue of the Selmer variety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.