Abstract

Stable control of the ball mill grinding process is very important to reduce energy losses, enhance operation efficiency, and recover valuable minerals. In this work, a controller for the ball mill grinding process is designed using a combination of model predictive control (MPC) with the equivalent-input-disturbance (EID) approach. MPC has been researched and applied widely as one of the multi-variable control algorithms for grinding. It is used to decouple in real time. The controller design does not deal with the disturbances directly. However, strong disturbances such as those caused by ore hardness and feed particle size exist in the ball mill grinding. EID estimates the equivalent disturbance of the grinding circuit in the control input channel and integrates this disturbance directly into the control law in order to suppress disturbances promptly and effectively. This results in good disturbance suppression performance. Simulation results demonstrate that the combination of MPC with EID for controlling the ball mill grinding circuit yields better performance in terms of disturbance rejection, rapid response, and strong robustness as compared to the performance of the MPC and proportional-integral (PI) decoupling control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.