Abstract
Real-time (re-)planning is crucial for autonomous quadrotors to navigate in uncertain environments where obstacles may be detected and trajectory plans must be adjusted on-the-fly to avoid collision. In this paper, we present a control system design for autonomous quadrotors that has real-time re-planning capability, including the hardware pipeline for the hardware–software integration to realize the proposed real-time re-planning algorithm. The framework is based on a modified version of the PX4 Autopilot and a Raspberry Pi 5 companion computer. The planning algorithm utilizes minimum-snap trajectory generation, taking advantage of the differential flatness property of quadrotors, to realize computationally light, real-time re-planning using an onboard computer. We first verify the control system and the planning algorithm through simulation experiments, followed by implementing and demonstrating the system on hardware using a quadcopter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.