Abstract
AbstractIn island mode, voltage source inverter (VSI) supports the frequency and voltage of microgrid. After the complex load is connected, the VSI control performance is degraded, and the output voltage has deviation, negative sequence, waveform distortion and other problems, which further deteriorate the power quality of the microgrid. Different from the traditional strategy that only focus on a single problem, the strategy proposed in this paper can deal with these three power quality problems simultaneously. In this paper, a self‐learning sliding mode control strategy is proposed. First, a nonlinear smooth function is used to design an expansion observer, which can estimate the expansion state of the internal uncertainties and external disturbances of the control system. Second, the extended observer is combined with the self‐learning synovial control technology to realize the self‐learning synovial disturbance rejection control of VSI control strategy. This strategy can improve the stability of voltage control under various working conditions without precise mathematical model. The simulation results show that, compared with the traditional control strategy, this strategy has good robustness under different working conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.