Abstract

Abstract Dynamics of multi-link manipulators are highly nonlinear and depend on the time varying configuration. This paper presents a method of gain scheduling which consists in designing a linear time invariant (LTI) controller for each operating point and in switching controller when the operating conditions change. Each LTI controller is designed based on LMI approach in which an optimization problem is defined as a mixed H2/H∞ control problem with pole placement. The performance of the force and the position controls is defined by the H2 norm, and the robust stability according to gain scheduling is evaluated with the H∞ norm and the pole placement of the closed-loop system. The effectiveness and the practicability of the proposed method are verified by both simulations and experiments with 2-link manipulator system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call