Abstract

This paper describes the implementation of a platform based on reconfigurable architecture and on concepts of virtual instrumentation and its application to the hands-free driving problem. The novelty of this approach is the use of both reconfigurable systems (for developing the car’s controller) and virtual instrumentation issues for developing a high-level abstraction testing and simulation environment. The implemented platform permits (a) to control directly the real vehicle using control commands that are sent using a keyboard and (b) to simulate the control process in a virtual environment, using a virtual instrumentation approach. The car control system was developed in a microcontroller with several peripheral embedded in a Field Programmable Gate Array (FPGA). The communication between the FPGA-based control system and the car is accomplished through an electronic module, which comprises several insulating and power circuit boards. The virtual instrumentation approach (for simulation and controller design objectives) was used for implementing a high-level abstraction simulation environment in LabVIEW tool, which allows representing the movement of the car in real time. The communication between the simulator and the controller is accomplished through a serial interface in which a RS-232 based protocol was implemented. The user can send commands to the control system through a keyboard with a PS2 interface. This approach opens a great variety of possibilities to validate and simulate solutions for several problems in robotic and mechatronic areas. The tests and initial overall system validation were accomplished in the simulator environment. Then, the simulation results were compared with the movement variables of the real car, which were gathered in real time. This approach makes possible to test and to validate the control system with low cost and more safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.