Abstract

Microbeams are widely seen in micro-electro-mechanical systems and their engineering applications. An active control strategy based on the fuzzy sliding mode control is developed in this research for controlling and stabilizing the nonlinear vibrations of a micro-electro-mechanical beam. An Euler-Bernoulli beam with a fixed-fixed boundary is employed to represent the microbeam, and the geometric nonlinearity of the beam and loading nonlinearity from the electrostatic force are considered. The governing equation of the microbeam is established and transformed into a multi-dimensional dynamic system with the third-order Galerkin method. A stability analysis is provided to show the necessity of the derived multi-dimensional dynamic system, and a chaotic motion is discovered. Then, a control approach is proposed, including a control strategy and a two-phase control method. For describing the application of the control approach developed, control of a chaotic motion of the microbeam is presented. The effectiveness of the active control approach is demonstrated via controlling and stabilizing the nonlinear vibration of the microbeam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.