Abstract

Further investigation of the turbulence time-frequency spectral structure and its anisotropy and nonhomogeneity has been carried out in the combustion chamber of an automotive diesel engine with a high-squish reentrant in-piston-bowl and a helical intake port. An advanced HWA technique was applied for turbulence measurements along the injector axis, under motored engine conditions in the speed range of 600–3000 rpm. Autospectral density functions of each fluctuating velocity component, as was determined by a specific sensor-wire orientation, were evaluated in consecutive crank-angle correlation intervals during the induction, compression, and early expansion strokes. In order to study the speed dependence of the turbulence-structure anisotropy and nonhomogeneity in different portions of the engine cycle, time-scales of cycle-resolved and conventional turbulent fluctuations were analyzed as functions of the engine speed for different wire orientations, measurement locations, and correlation intervals. Anisotropy and nonhomogeneity were generally significant at low engine speeds, whereas a tendency towards isotropy and homogeneity was found by increasing the speed. With specific reference to the bowl-generated turbulence, spectral anisotropy was remarkable at all speeds in the reverse-squish flow, close to the cylinder-head wall. However, spectral nonhomogeneity was the main feature of the direct-squish flow at low engine speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.