Abstract

To develop a contrast-enhanced CT (CECT) radiomics-based model to identify locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients who would benefit from deintensified chemoradiotherapy. LA-NPC patients who received low-dose concurrent cisplatin therapy (cumulative: 150mg/m2), were randomly divided into training and validation groups. 107 radiomics features based on the primary nasopharyngeal tumor were extracted from each pre-treatment CECT scan. Through Cox regression analysis, a radiomics model and patients' corresponding radiomics scores were created with predictive independent radiomics features. T stage (T) and radiomics score (R) were compared as predictive factors. Combining the N stage (N), a clinical model (T + N), and a substitution model (R + N) were constructed. Training and validation groups consisted of 66 and 33 patients, respectively. Three significant independent radiomics features (flatness, mean, and gray level non-uniformity in gray level dependence matrix (GLDM-GLN)) were found. The radiomics score showed better predictive ability than the T stage (concordance index (C-index): 0.67 vs. 0.61, AUC: 0.75 vs. 0.60). The R + N model had better predictive performance and more effective risk stratification than the T + N model (C-index: 0.77 vs. 0.68, AUC: 0.80 vs. 0.70). The R + N model identified a low-risk group as deintensified chemoradiotherapy candidates in which no patient developed progression within 3years, with 5-year progression-free survival (PFS) and overall survival (OS) both 90.7% (hazard ratio (HR) = 4.132, p = 0.018). Our radiomics-based model combining radiomics score and N stage can identify specific LA-NPC candidates for whom de-escalation therapy can be performed without compromising therapeutic efficacy. Our study shows that the radiomics-based model (R + N) can accurately stratify patients into different risk groups, with satisfactory prognosis in the low-risk group when treated with low-dose concurrent chemotherapy, providing new options for individualized de-escalation strategies. • A radiomics score, consisting of 3 predictive radiomics features (flatness, mean, and GLDM-GLN) integrated with the N stage, can identify specific LA-NPC populations for deintensified treatment. • In the selection of LA-NPC candidates for de-intensified treatment, radiomics score extracted from primary nasopharyngeal tumors based on CECT can be superior to traditional T stage classification as a predictor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call