Abstract

We consider the zero-crossing rate (ZCR) of a Gaussian process and establish a property relating the lagged ZCR (LZCR) to the corresponding normalized autocorrelation function. This is a generalization of Kedem’s result for the lag-one case. For the specific case of a sinusoid in white Gaussian noise, we use the higher-order property between lagged ZCR and higher-lag autocorrelation to develop an iterative higher-order autoregressive filtering scheme, which stabilizes the ZCR and consequently provide robust estimates of the lagged autocorrelation. Simulation results show that the autocorrelation estimates converge in about 20 to 40 iterations even for low signal-to-noise ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.