Abstract
Continuum solvent models of electrolyte solutions are extremely useful. However, before we can use them with confidence, it is important to test them by comparison with a range of experimental properties. Here, we have adapted our recently developed1,2 simple continuum solvent model of ionic solvation free energies to calculate the solvation entropies and partial molar volumes of a group of monovalent and monatomic ions. This procedure gives good quantitative agreement for larger ions, and reproduces key qualitative features, such as the shift to positive entropies of solvation for iodide and the shift to negative partial molar volumes for small cations. Small ions require a correction to account for dielectric saturation effects, which brings them also into good agreement with experiment. We argue that this model does not require ad hoc corrections, and uses parameters that have good external physical justification. This work therefore establishes that our continuum solvent model can provide a satisfactory understanding of ionic solvation. It can thus serve as a foundation for improved models that explain and predict more complex ion specific effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.