Abstract
In this paper, we apply the variational method with Structural Prescribed Boundary Conditions (SPBC) to prove the existence of periodic and quasi-periodic solutions for the planar four-body problem with two pairs of equal masses m1=m3 and m2=m4. A path q(t) on [0,T] satisfies the SPBC if the boundaries q(0)∈A and q(T)∈B, where A and B are two structural configuration spaces in (R2)4 and they depend on a rotation angle θ∈(0,2π) and the mass ratio μ=m2m1∈R+.We show that there is a region Ω⊆(0,2π)×R+ such that there exists at least one local minimizer of the Lagrangian action functional on the path space satisfying the SPBC {q(t)∈H1([0,T],(R2)4)|q(0)∈A,q(T)∈B} for any (θ,μ)∈Ω. The corresponding minimizing path of the minimizer can be extended to a non-homographic periodic solution if θ is commensurable with π or a quasi-periodic solution if θ is not commensurable with π. In the variational method with the SPBC, we only impose constraints on the boundary and we do not impose any symmetry constraint on solutions. Instead, we prove that our solutions that are extended from the initial minimizing paths possess certain symmetries.The periodic solutions can be further classified as simple choreographic solutions, double choreographic solutions and non-choreographic solutions. Among the many stable simple choreographic orbits, the most extraordinary one is the stable star pentagon choreographic solution when (θ,μ)=(4π5,1). Remarkably the unequal-mass variants of the stable star pentagon are just as stable as the equal mass choreographies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.