Abstract

Recent experiments and atomic scale computations indicate that the standard continuum models of diffusion in stressed solids do not accurately describe transport, deformation and stress in Li–Si alloys. We suggest that this is because classical models do not account for the irreversible changes in atomic structure of Si that are known to occur during a charge–discharge cycle. A more general model of diffusion in an amorphous solid is described, which permits unoccupied Si lattice sites to be created or destroyed. This may occur as a thermally activated process; or as a result of irreversible plastic deformation under stress. The model predicts a range of phenomena observed in experiment that cannot be captured using classical models, including irreversible changes in volume resulting from a charge–discharge cycle, asymmetry between the tensile and compressive yield stress, and a slow evolution in mechanical and electrochemical response over many charge–discharge cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call