Abstract

This paper presents a study of a simple one-dimensional continuum model for growth of the plant root. A fundamental constitutive equation is derived. The model is studied by means of various special cases of increasing complexity. Asymptotic expansions are used to derive approximate solutions to the equation of the model under the fundamental assumption that cell wall thickness is small in comparison with the diameter of the cell. The basic results of the study may be summarized as follows. The observed growth pattern of the root cannot be modelled by a mechanical system whose properties are independent of position on the root. The observed pattern can be modelled by a simple mechanical system in which, for example, cell wall yield stress first decreases and then increases. Two fundamental observations are made based on the modelling study. The first is that any mechanical model must take into account the convective displacement from the tip of points along the root. The second is that in describing growth, data on cell wall mechanical properties are meaningless without corresponding data on cell water potential, and vice versa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call