Abstract

Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O2 and CO2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.

Highlights

  • Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration

  • Geigenberger et al [3] observed internal O2 concentrations below 5 kPa, causing partial inhibition of respiration, decrease in the cellular energy status, and partial inhibition of other energy-consuming processes. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may even occur, eventually leading to cell death and loss of the product [8]

  • Gas exchange was coupled with the respiration kinetics of fruit tissue

Read more

Summary

Introduction

Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. Geigenberger et al [3] observed internal O2 concentrations below 5 kPa, causing partial inhibition of respiration, decrease in the cellular energy status, and partial inhibition of other energy-consuming processes In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may even occur, eventually leading to cell death and loss of the product [8]. While it is likely that this is related to differences in concentration gradients resulting from differences in tissue diffusivity and respiratory activity, there is little information about such gas gradients in fruit in the literature Such knowledge would be, very valuable both to understand gas exchange in plant tissue and to guide commercial storage practices, since disorders under controlled atmosphere related to fermentation are a prime cause of concern [10,11,12,13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.