Abstract

Predicting the fatigue failure of whole bone may provide insight into the etiology of stress fractures and lead to new methods for preventing and rehabilitating these injuries. Although finite element (FE) models of whole bone have been used to predict fatigue failure, they often do not consider the cumulative and nonlinear effect of fatigue damage, which causes stress redistribution over many loading cycles. The purpose of this study was to develop and validate a continuum damage mechanics FE model for the prediction of fatigue damage and failure. Sixteen whole rabbit-tibiae were imaged using computed tomography (CT) and then cyclically loaded in uniaxial compression until failure. CT images were used to generate specimen-specific FE models and a custom program was developed to iteratively simulate cyclic loading and progressive modulus degradation associated with mechanical fatigue. Four tibiae from the experimental tests were used to develop a suitable damage model and define a failure criterion; the remaining twelve tibiae were used to test the validity of the continuum damage mechanics model. Fatigue-life predictions explained 71% of the variation in experimental fatigue-life measurements with a directional bias towards over-predicting fatigue-life in the low-cycle regime. These findings demonstrate the efficacy of using FE modeling with continuum damage mechanics to predict damage evolution and fatigue failure of whole bone. Through further refinement and validation, this model may be used to investigate different mechanical factors that influence the risk of stress fractures in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call