Abstract

The present study is concerned with the development and implementation of a continuum damage mechanics model describing the degradation and failure of short fiber reinforced composites subjected to static and fatigue loads. Towards a numerically efficient formulation, the model is defined entirely on the macroscopic scale, although being motivated by microstructural considerations. Based on experimental observations, an anisotropic linear elastic formulation is adopted as a base formulation. The elastic model is coupled with a damage formulation assuming that damage is driven by the approach of a state point in strain space to a Tsai-Hill type failure envelope. The model is implemented as a user defined subroutine into a finite element formulation. As a numerically highly efficient alternative, an enhanced Wöhler-Miner type post-processing procedure is proposed. Both numerical approaches are found in good agreement with experimental data obtained in coupon experiments as well as in experiments on specimens with more complex geometry and loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call