Abstract

AbstractTheoretical effort so far in understanding epitaxial growth has focused mainly on the one-component growth, i.e. growth that can be fully characterized by a surface (or height) profile. The predictions are also quite limited to the height-height correlation functions as a function of substrate size and the amount of deposition. In this paper, we consider the case of a two-component growth which is quite common in metallic thin films. Instead of using large-scale simulation, we first write down the appropriate two-component growth equations in continuum form. These equations are carefully designed such that in the limit of one-component growth the corresponding equation is recovered. Analytical and numerical analysis of the proposed equations allow us to study the long-range physics associated with these growth processes. Comparison with computer growth experiments is also mentioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call