Abstract
AbstractWe present a continuum approach to predicting the electrophoretic mobility of a charged dielectric colloidal particle in a concentrated multivalent electrolyte. Our model takes into account steric (excluded volume) hindrance between ions via Bikerman’s approach (Philos. Mag., vol. 33, 1942, p. 384) and ion–ion electrostatic (Coulombic) correlations via the work of Bazant et al. (Phys. Rev. Lett., vol. 106, 2011, 046102). The latter can result in the prediction of an electrophoretic mobility reversal, that is, the migration velocity of a particle switches direction with increasing ion concentration. Our model predictions compare favourably with experiments that observe mobility reversals in multivalent electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.