Abstract

BackgroundState-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations.MethodsWe formulate a continuous-time state-space model to filter the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos location data. We validate the model by fitting to Argos locations collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to contemporaneous GPS locations. We then test assumptions that Argos Kalman filter/smoother error ellipses are unbiased, and that Argos Kalman smoother location accuracy cannot be improved by subsequent state-space modelling.ResultsEstimation accuracy varied among species with Root Mean Squared Errors usually <5 km and these decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes in the north - south direction resulted in more accurate location estimates. Finally, in some cases the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother is using all available information.ConclusionsOur model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with accuracy similar to or marginally better than Argos Kalman smoother data that are only available via fee-based reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.

Highlights

  • State-space models are important tools for quality control and analysis of error-prone animal movement data

  • It should not be possible to improve the accuracy of Kalman smoother (KS)-based locations with subsequent modelling because they are theoretically optimal estimates, using all available data. To question whether this is the case. We evaluated this by comparing log Root Mean Squared Deviation (RMSD) derived from Global Positioning System (GPS) and KS locations to those derived from GPS and estimates from the state-space model fit to the KS locations

  • Model fits to hawksbill turtle and southern elephant seal data show a consistent increase in spatial resolution and decrease in estimation uncertainty of the predicted tracks across the three Argos data types (top to bottom; (Fig. 2 a,e,i and b,f,j, respectively)

Read more

Summary

Introduction

State-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones This capability facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. State-space models have emerged as important tools both for quality control and ecological analysis of error-prone animal movement data [1,2,3,4,5]. This approach does not quantify location uncertainty but rather provides location quality classes based on information including the number of transmissions received [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call