Abstract

In this study, a variation of the stacked stereoscopic PIV technique is proposed to perform fully volumetric (3-dimensions, 3-components) measurements of average flow fields within a single experiment through the usage of an automated traversing system that continuously scans the SPIV light sheet over a linear path. The simultaneous measurement of the traverse location and the laser Q-switch pulse enables the automated assignment of instantaneous PIV fields to known physical coordinates, enabling spatiotemporal averaging in post-processing to obtain volumetric measurements of a flow field. This method provides a trade-off between spatial resolution of the volume measurements and statistical convergence of the spatiotemporal averages, enabling volumetric measurements under challenging experimental conditions where only stereoscopic PIV is viable. A comparison with the more traditional temporal averaging method and planar PIV is presented to demonstrate the capabilities and limitations of this technique in realistic, challenging experimental setups. It is found that the spatiotemporal averaging convergence behavior differs slightly from the traditional temporal averaging for the wake of a bluff body model, however relative errors lower than two standard deviations can still be attained. Thus, this technique presents a viable alternative for rapid 3D reconstruction of averaged flow fields that can provide invaluable insight of various flow topologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call