Abstract

Experimental characteristics of a continuously pulsed copper halide laser with a cable-capacitor Blumlein discharge circuit are reported. Quartz laser tubes 1 m in length and 1.5 and 2.5 cm in diameter were employed to study the effects of the electrical circuit, lasant, and buffer gas on laser performance. Measured properties of the Blumlein circuit are compared with an analytic solution for an idealized circuit. Both CuCl and CuBr with neon and helium buffer gas were studied. A maximum average power of 12.5 W was obtained with a 1.5 nF capacitor charged to 8 kV and discharged at 31 kHz with CuCl and neon buffer gas at 0.7 kPa in a 2.5-cm-diam tube. A maximum efficiency of 0.72 percent was obtained at 9 W average power. Measurements of the radial distribution of the power in the laser beam and the variation of laser power at 510.6 and 578.2 nm with halide vapor density are also reported. Double and continuously pulsed laser characteristics are compared, and the role of copper metastable level atoms in limiting the laser pulse energy density is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call