Abstract
A continuous time GARCH model of order (p,q) is introduced, which is driven by a single Levy process. It extends many of the features of discrete time GARCH(p,q) processes to a continuous time setting. When p=q=1, the process thus defined reduces to the COGARCH(1,1) process of Kluppelberg, Lindner and Maller (2004). We give sufficient conditions for the existence of stationary solutions and show that the volatility process has the same autocorrelation structure as a continuous time ARMA process. The autocorrelation of the squared increments of the process is also investigated, and conditions ensuring a positive volatility are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.