Abstract

Virtual environment (VE), as the proxy of slave contact environment, is the most promising technology to solve the time-delay problems in teleoperation. The accuracy of the predicted force depends not only on the reliability of the contact model but also on the estimation algorithm’s adaptability. A new contact model is proposed to be applicable in various materials, which includes both the Kelvin–Voigt model (KVM) and Hunt–Crossley model (HCM). An extra parameter is set in the model to express the capacity of continuous switching between KVM and HCM, whose rationality is proved based on the energy loss. The energy loss is proportional to a power of impact velocity, and the exponent is bounded at [2,3], which exactly lies between KVM and HCM. Furthermore, to estimate the parameters with a single-stage method, the nonlinear model is linearized approximatively with logarithm function and polynomials. Then, the recursive least squares (RLS) algorithm combining forgetting factor and self-perturbing action is designed to identify the four parameters online. Finally, the model’s continuous switching is verified with ideal simulation, and the model parameters are continuously changed without jumpy switch error. In the experiment, sponge, foam, and human hand represent the complex contact materials of the slave environment where the predicted force is shown to follow the real contact force with enough accuracy. Therefore, the virtual model can be considered the substitution of slave contact environment so that the feedback force in master can be calculated in real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call