Abstract

Models that simulate clinical conditions are needed to gain an understanding of the mechanism involved during spinal cord stimulation (SCS) treatment of chronic neuropathic pain. An animal model has been developed for continuous SCS in which animals that have been injured to develop neuropathic pain behavior were allowed to carry on with regular daily activities while being stimulated for 72 hours. Sprague-Dawley rats were randomized into each of six different groups (N = 10-13). Three groups included animals in which the spared nerve injury (SNI) was induced. Animals in two of these groups were implanted with a four-contact electrode in the epidural space. Animals in one of these groups received stimulation for 72 hours continuously. Three corresponding sham groups (no SNI) were included. Mechanical and cold-thermal allodynia were evaluated using von Frey filaments and acetone drops, respectively. Mean withdrawal thresholds were compared. Statistical significance was established using one-way ANOVAs followed by Holm-Sidak post hoc analysis. Continuous SCS attenuates mechanical allodynia in animals with neuropathic pain behavior. Mechanical withdrawal threshold increases significantly in SNI animals after 24 and 72 hours stimulation vs. SNI no stimulation (p = 0.007 and p < 0.001, respectively). SCS for 24 and 72 hours provides significant increase in mechanical withdrawal thresholds relative to values before stimulation (p = 0.001 and p < 0.001, respectively). Stimulation did not provide recovery to baseline values. SCS did not seem to attenuate cold-thermal allodynia. A continuous SCS model has been developed. Animals with neuropathic pain behavior that were continuously stimulated showed significant increase in withdrawal thresholds proportional to stimulation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.