Abstract
We examined the fine-scale mapping of the visual world within the primary visual cortex of the marmoset monkey (Callithrix jacchus) using differential optical imaging. We stimulated two sets of complementary stripe-like locations in turn, subtracting them to generate the cortical representations of continuous bands of visual space. Rotating this stimulus configuration makes it possible to map different spatial axes within the primary visual cortex. In a similar manner, shifting the stimulated locations between trials makes it possible to map retinotopy at an even finer scale. Using these methods we found no evidence of any local anisotropies or distortions in the cortical representation of visual space. This is despite the fact that orientation preference is mapped in a discontinuous manner across the surface of marmoset V1. Overall, our results indicate that space is mapped in a continuous and smooth manner in the primary visual cortex of the common marmoset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.