Abstract

Interacting with ridesharing systems is a complex spatiotemporal task. Traditional approaches rely on the full disclosure of a client's trip information to perform ride matching. However during poor service conditions of low supply or high demand, this requirement may mean that a client cannot find any ride matching their intentions. To address this within real-world road networks, we extend our map-based opportunistic client user interface concept, i.e., launch pads, from a discrete to a continuous space–time representation of vehicle accessibility to provide a client with a more realistic choice set. To examine this extension under different conditions, we conduct two computational experiments. First, we extend our previous investigation into the effects of varying vehicle flexibility and population size on launch pads and a client's probability of pick-up, describing the increased opportunity. Second, observing launch pads within a real-world road network, we analyze aspects of choice and propose necessary architecture improvements. The communication of ride share potential using launch pads provides a client with a simple yet flexible means of interfacing with on-demand transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.