Abstract
As part of a newly funded international program to monitor ocean heat transport at mid‐latitudes in the North Atlantic, a continuous estimate of the temperature transport of the Florida Current is required. Since 1982, volume transports have been inferred from voltage measurements monitored by submarine telephone cables across the Straits of Florida. Electromagnetic induction theory suggests that the cable voltage should actually give a more direct measure of conductivity transport than pure volume transport. Due to the strong dependence of conductivity on temperature, this would in theory result in a direct and continuous estimate of the Florida Current temperature transport. This hypothesis is investigated using data from a large number of temperature and velocity sections (58) across the Florida Current at the cable location, leading to a new calibration of the voltage signal for the temperature transport of the Florida Current, crucial for trans‐basin heat flux estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.