Abstract

The performance of both batch and continuous photo-catalytic reactors was studied to evaluate their capabilities in removing the sulfonyl urea herbicide of metsulfuron methyl (MM). It was found in a batch reactor that the addition of a small amount of powder activated carbon (PAC) significantly increased the rate of degradation of MM. The continuous photo-catalytic system resulted in 57% of MM removal. When a small dose of activated carbon was added in the photo-catalytic system, MM removal increased to 78–86% MM removal for retention times between of 5.25–21 min (corresponding to withdrawal rates of 10–40 mLmin−1). In this study, the pseudo first order rate constants of a continuous photo-catalytic system revealed that shorter retention times were associated with lower rate constants. Solid phase micro extraction/gas chromatography (SPME/GC) results showed that high concentrations of MM were broken down to small volatile organic compounds (VOCs) by photo-catalytic oxidation. PAC adsorbed the photo-products and increased the degradation of MM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call