Abstract
Due to their very high replication and mutation rates, RNA viruses can serve as an excellent testing model for verifying hypothesis and addressing questions in evolutionary biology. In this paper, we suggest a simple deterministic mathematical model of the within-host viral dynamics, where a possibility for random mutations incorporates. This model assumes a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by Brownian motion (that is, by diffusion). Numerical simulations show that random mutations combined with competition for a resource result in evolution towards higher Darwinian fitness: a stable pulse traveling wave of evolution, moving towards higher levels of fitness, is formed in the phenotype space. The advantage of this model, compared with the previously constructed models, is that this model is mechanistic and is based on commonly accepted model of virus dynamics within a host, and thus it allows an incorporation of features of the real-life host-virus system such as immune response, antiviral therapy, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.