Abstract

At complex industrial sites, the high number of large consumers that make the technological process chain requires direct supply from the main high-voltage grid. Often, for operational flexibility and redundancy, the main external supply is complemented with small local generation units. When a contingency occurs in the grid and the main supply is cut off, the local generators are used to keep in operation the critical consumers until the safe shutdown of the entire process can be achieved. In these scenarios, in order to keep the balance between local generation and consumption, the classic approach is to use under-frequency load-shedding schemes. This paper proposes a new load-shedding algorithm that uses particle swarm optimization and forecasted load data to provide a low-cost alternative to under-frequency methods. The algorithm is built using the requirements and input data provided by a real industrial site from Romania. The results show that local generation and critical consumption can be kept in stable operation for the time interval required for the safe shutdown of the running processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call