Abstract
This paper develops a continuous standing human body model in the vertical vibration based on an anthropomorphic model, two measured natural frequencies of a biomechanics model, and structural dynamics methods. The mass distribution of a standing body is formed using the mass distribution of fifteen body segments in the anthropomorphic model. The axial stiffness of the model is determined based on the best matching to the two natural frequencies of the biomechanics model which were obtained using shaking table tests. Four similar models are assessed using finite element parametric analysis. The best of the four models has seven uniform mass segments with two stiffnesses and the same fundamental natural frequency as that of the biomechanics model, but its second natural frequency is 10% higher. The mode shapes of the continuous model are presented to demonstrate the relative magnitude of vibration throughout the height of the body. Finally the modal mass and stiffness of the continuous model are evaluated, which are related to some simple discrete models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.