Abstract

In this work, an improved in-situ EPR hydrodynamic electrochemical cell design is constructed and validated. The created platform enables the fast and accurate screening of new electrocatalytic materials, providing insights into their effects on radical products of a reaction. Furthermore, it is essential that the reaction kinetics are not influenced by the set-up and that mass transfer can be controlled. Our modular design allows for fast and easy replacement of parts and adjustments to electrodes in order to unravel the catalysts' influence on radical formation. The proximity of the pseudo-reference electrode to the working electrode in combination with the flow and electrode positioning allows for good potential control. The POM housing allows easy manipulation of the channel and excludes the use of sealing agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.