Abstract

AbstractA thin set is defined to be an uncountable dense zero-dimensional subset of measure zero and Hausdorff measure zero of an Euclidean space. A fat set is defined to be an uncountable dense path-connected subset of an Euclidean space which has full measure, that is, its complement has measure zero. While there are well-known pathological maps of a set of measure zero, such as the Cantor set, onto an interval, we show that the standard addition on $\mathbb {R}$ maps a thin set onto a fat set; in fact the fat set is all of $\mathbb {R}$ . Our argument depends on the theorem of Paul Erdős that every real number is a sum of two Liouville numbers. Our thin set is the set $\mathcal {L}^{2}$ , where $\mathcal {L}$ is the set of all Liouville numbers, and the fat set is $\mathbb {R}$ itself. Finally, it is shown that $\mathcal {L}$ and $\mathcal {L}^{2}$ are both homeomorphic to $\mathbb {P}$ , the space of all irrational numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call