Abstract

The common substrate structure for the functionally diverse Nudix protein superfamily is nucleotide-diphosphate-X, where X is a large variety of leaving groups. The substrate specificity is known for less than 1% of the 29,400 known members. Most activities result in the release of an inorganic phosphate ion or of a product bearing a terminal phosphate moiety. Reactions have typically been monitored by a modification of the discontinuous Fiske–SubbaRow assay, which is relatively insensitive and slow. We report here the development of a continuous fluorescence assay that enables the rapid and accurate determination of substrate specificities in a 96-well format. We used this novel assay to confirm the reported substrate characterizations of MutT and NudD of Escherichia coli and to characterize DR_1025 of Deinococcus radiodurans and MM_0920 of Methanosarcina mazei. Novel findings enabled by the new assay include the following. First, in addition to the well-characterized hydrolysis of 8-oxo-dGTP at the α–β position, MutT cleaves at the β–γ phosphate bond at a rate of 3% of that recorded for hydrolysis at the α–β position. Second, MutT also catalyzes the hydrolysis of 5-methyl-dCTP. Third, 8-oxo-dGTP was observed to be the best substrate for DR_1025 of the 41 compounds screened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.