Abstract
A generally applicable continuous-flow kinetic analysis system that gives data of a precision high enough to measure small kinetic isotope effects for enzymatic and nonenzymatic reactions is described. It employs commercially available components that are readily assembled into an apparatus that is easy to use. It operates under laminar flow conditions, which requires that the time between the initiation of the reaction in the mixer and the observation be long enough that molecular diffusion can effect a symmetrization of the concentration profile that results from a thin plug of reagents introduced at the mixer. The analysis of a second-order irreversible reaction under pseudo-first-order conditions is presented. The Yersinia pestis protein tyrosine phosphatase catalyzed hydrolysis of p-nitrophenyl phosphate is characterized with the system, and a proton inventory on kcat is presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.