Abstract

In this research, a unique continuous electrochemical cell was designed and applied for the disinfection of groundwater and simultaneous Cr(VI) reduction and Cr(III) precipitation. Discarded cigarette filters (DCFs) were utilized as an efficient bed for palladium nanoparticles (PdNPs) immobilization located between porous anode and cathode made of graphite felt. The characterization of the bed was performed using FE-SEM, EDS, BET, and FT-IR analysis. The results confirmed the distribution of palladium nanoparticles on the surface of DCFs. The proposed design for electrochemical cell obviated the need to divide the anolyte and catholyte because the anode was located at the outlet of the cell, thereby avoiding the reaction between hydrogen radicals produced on the surface of PdNPs and oxygen and chlorine produced in the anode. The hydrogen gas produced in the cathode was converted to hydrogen radicals, acting as the most prominent species for the reduction. Hydroxide ions produced in the cathode increased the pH of the solution between electrodes, resulting in the precipitation of Cr (III) with an efficiency of 96%. Furthermore, free chlorine at the concentration of 1 mg L−1 was generated through chloride ion oxidation in the anode, which can be effective for disinfection. The effect of initial Cr (VI) concentration (C0), flow rate (Q), and current (I) was investigated, and the maximum removal efficiency (99.7%) was observed at the flow rate of 5 mL min−1 and current of 0.05 A, respectively. No interference ensued from the various coexisting ions in groundwater. The findings of this study suggested that the proposed electrochemical cell is capable of in-situ total chromium removal and free chlorine production in groundwater simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call