Abstract

In this paper, a new continuous conduction mode (CCM) low-ripple high-efficiency charge-pump boost converter is presented. Its components include a double voltage charge pump and a low pass LC filter. The voltage boost ratio of the positive low-ripple output voltage of the proposed converter is (1 + D) where D is the duty cycle of the control switching signal waveform. Since the energy storage inductor is connected to the power source and the load at all times, the proposed converter always operates in CCM, the transient responses are fast, and the current stress on the output capacitor is reduced and the output voltage ripple is small. In this paper, the operation principles of the CCM low-ripple high-efficiency charge-pump boost converter are described in detail. Its circuitry is designed and implemented with a TSMC 0.35 μm CMOS processes whose operation frequency is 1 MHz. The circuitry is simple and the power conversion efficiency is up to 90.95 %, and the transient response is only 7 μs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.