Abstract

A new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical clustering model, the Cahn Hilliard model (J. Cahn and J. Hilliard, 1958), which describes phase separation, is modified to reflect the properties of the data to be visualized. Clusters are defined implicitly as connected components of the positivity set of a density function. An evolution equation for this function is obtained as a suitable gradient flow of an underlying anisotropic energy functional. Here, time serves as the scale parameter. The evolution is characterized by a successive coarsening of patterns: the actual clustering, and meanwhile the underlying simulation data specifies preferable pattern boundaries. The authors discuss the applicability of this new type of approach mainly for flow fields, where the cluster energy penalizes cross streamline boundaries, but the method also carries provisions in other fields as well. The clusters are visualized via iconic representations. A skeletonization algorithm is used to find suitable positions for the icons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.