Abstract

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a bipartite graph $$G$$ , we are able to formulate a continuous optimization problem (namely, an approximate rank-one matrix factorization problem with nonnegativity constraints, R1N for short), and show that there is a one-to-one correspondence between (1) the maximum (i.e., the largest) bicliques of $$G$$ and the global minima of R1N, and (2) the maximal bicliques of $$G$$ (i.e., bicliques not contained in any larger biclique) and the local minima of R1N. We also show that any stationary points of R1N must be close to a biclique of $$G$$ . This allows us to design a new type of biclique finding algorithm based on the application of a block-coordinate descent scheme to R1N. We show that this algorithm, whose algorithmic complexity per iteration is proportional to the number of edges in the graph, is guaranteed to converge to a biclique and that it performs competitively with existing methods on random graphs and text mining datasets. Finally, we show how R1N is closely related to the Motzkin---Strauss formalism for cliques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.