Abstract
In a continuous approach we propose an efficient method for globally solving linearly constrained quadratic zero-one programming considered as a d.c. (difference of onvex functions) program. A combination of the d.c. optimization algorithm (DCA) which has a finite convergence, and the branch-and-bound scheme was studied. We use rectangular bisection in the branching procedure while the bounding one proceeded by applying d.c.algorithms from a current best feasible point (for the upper bound) and by minimizing a well tightened convex underestimation of the objective function on the current subdivided domain (for the lower bound). DCA generates a sequence of points in the vertex set of a new polytope containing the feasible domain of the problem being considered. Moreover if an iterate is integral then all following iterates are integral too.Our combined algorithm converges so quite often to an integer approximate solution.Finally, we present computational results of several test problems with up to 1800 variables which prove the efficiency of our method, in particular, for linear zero-one programming
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.