Abstract
AbstractA high‐order local transmitting boundary is developed to model the propagation of elastic waves in unbounded domains. This transmitting boundary is applicable to scalar and vector waves, to unbounded domains of arbitrary geometry and to anisotropic materials. The formulation is based on a continued‐fraction solution of the dynamic‐stiffness matrix of an unbounded domain. The coefficient matrices of the continued fraction are determined recursively from the scaled boundary finite element equation in dynamic stiffness. The solution converges rapidly over the whole frequency range as the order of the continued fraction increases. Using the continued‐fraction solution and introducing auxiliary variables, a high‐order local transmitting boundary is formulated as an equation of motion with symmetric and frequency‐independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable for evaluating the response in the frequency and time domains. Analytical and numerical examples demonstrate the high rate of convergence and efficiency of this high‐order local transmitting boundary. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.